《环境昆虫学报》
文章摘要:针对在低信噪比环境下传统语音增强方法适应性差和增强效果不理想的问题,提出一种基于Wasserstein散度的深度生成对抗网络(Wasserstein Divergence Deep Generative Adversarial Network)的语音增强方法。该方法以5个生成器和1个判别器为基础组成深度生成对抗网络,利用5个生成器进行5次增强处理,有效提高对抗网络在低信噪比条件下的增强效果,使用Wasserstein散度优化网络训练,改善传统GAN网络训练过程中存在的训练不稳定等问题,提高深度生成对抗网络训练的稳定性。在低信噪比环境下该方法相比于传统语音增强方法噪声适应性和增强效果都有明显提升。实验结果表明,与原始带噪语音相比,增强语音的分段信噪比平均提高6.1dB,语音质量感知评估测度和短时客观可懂度分别平均提升28.9%和10.6%。
文章关键词:
论文分类号:TN912.35